I B.Tech I Semester Supplementary Examinations, Jan/Feb 2015 MATHEMATICS-I
(Common to Civil Engineering, Electrical \& Electronics Engineering, Mechanical Engineering, Electronics \& Communication Engineering, Computer Science \& Engineering, Chemical Engineering, Electronics \& Instrumentation Engineering, Bio-Medical Engineering, Information Technology, Electronics \& Computer Engineering, Aeronautical Engineering, Bio-Technology, Automobile Engineering, Mining and Petroliem Technology)
Time: 3 hours
Max Marks: 75
Answer any FIVE Questions
All Questions carry equal marks

1. (a) Solve $x \frac{d y}{d x}+y=x^{3} y^{6}$
(b) Find the orthogonal trajectory of the family of curves $r^{2}=a \operatorname{Cos} 2 \theta$, where ' a ' is a parameter
2. (a) Define (i) Complementary Function (ii) Particular Integral
(iii) Auxiliary Equation (iv) General Solution of a differential equation
(b) Solve $y^{11}-3 y^{1}+2 y=0, y(0)=-1, y^{1}(0)=0$
3. (a) Find Taylor's series expansion of $\mathrm{f}(\mathrm{x}, \mathrm{y})=x^{2}+y^{2}$ in powers of ($\mathrm{x}-1$) and ($\mathrm{y}-2$).
(b) Expand $\mathrm{f}(\mathrm{x}, \mathrm{y})=e^{y} \cos x$ in powers of $\left(x-\frac{\pi}{4}\right)$ and $(\mathrm{y}-1)$.
4. (a) Trace the curve $\mathrm{r}=2+3 \sin \theta$.
(b) Trace the curve $y^{2}(2 a-x)=x^{3}$.
5. (a) Find the surface area generated by rotating the arc of the catenary
$\mathrm{y}=\mathrm{a} \cosh \frac{x}{a}$ from $\mathrm{x}=0$ to a about the x -axis.
(b) Find the volume of the solid generated by revolving about the x -axis of the loop of the curve $y^{2}=x^{2} \frac{(a+x)}{a-x}$.
6. (a) Show that $\int_{0}^{4 a} \int_{\frac{y^{2}}{4 a}}^{y} \frac{x^{2}-y^{2}}{x^{2}+y^{2}} \mathrm{dx} \mathrm{dy}=8 a^{2}\left(\frac{\pi}{2}-\frac{5}{3}\right)$.
(b) Evaluate $\iint_{R} y d x d y$ where R is the domain bounded by y -axis, the curve $\mathrm{y}=x^{2}$ and the line $x+y=2$ in the first quadrants .
7. (a) Prove that div curl $f=0$
(b) For what value of the constant a will the vector $\mathrm{A}=\left(\mathrm{axy}-\mathrm{z}^{3}\right) \mathrm{i}+(\mathrm{a}-2) \mathrm{x}^{2} \mathrm{j}+(1-\mathrm{a}) \mathrm{xz}^{2} \mathrm{k}$ have its curl identically equal to zero. [8+7]
8. (a) Find $\int_{c} f . d r$ where $\mathrm{f}=\mathrm{xy} \mathrm{i}+\mathrm{yz} \mathrm{j}+\mathrm{zx} \mathrm{k}$ and the curve C is $\mathrm{r}=\mathrm{ti}+\mathrm{t}^{2} \mathrm{j}+\mathrm{t}^{3} \mathrm{k}$, t varying from -1 to 1
(b) Show that $\int_{s}(a x i+b y j+c z k) \cdot N d S=\frac{4 \pi}{3}(\mathrm{a}+\mathrm{b}+\mathrm{c})$ where S is the surface of the surface of the sphere $\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}=1$.

Set No. 2

I B.Tech I Semester Supplementary Examinations, Jan/Feb 2015 MATHEMATICS-I
(Common to Civil Engineering, Electrical \& Electronics Engineering, Mechanical Engineering, Electronics \& Communication Engineering, Computer Science \& Engineering, Chemical Engineering, Electronics \& Instrumentation Engineering, Bio-Medical Engineering, Information Technology, Electronics \& Computer Engineering, Aeronautical Engineering, Bio-Technology, Automobile Engineering, Mining and Petroliem Technology)
Time: 3 hours
Max Marks: 75
Answer any FIVE Questions
All Questions carry equal marks

1. (a) Solve $\left(x y^{3}+y\right) d x+2\left(y^{2} x^{2}+x+y^{4}\right) d y=0$
(b) A bacterial culture, growing exponentially, increases from 100 to 400 grams in 12 hours. How much was present after 3 hours from the initial instant [8+7]
2. (a) Solve $\left(D^{2}+4 D+3\right) y=2 e^{-3 x}$
(b) Solve $\left(D^{4}-1\right) y=\operatorname{Cos} x$
3. (a) If $\mathrm{U}=e^{-2 x y} \sin \left(x^{2}-y^{2}\right)$ show that $\frac{\partial^{2} U}{\partial x^{2}}+\frac{\partial^{2} U}{\partial y^{2}}=0$.
(b) Find Taylor's series expansion of the $\mathrm{f}(\mathrm{x})=x^{\frac{3}{2}}$ in powers of $(\mathrm{x}-1)$. $[8+7]$
4. (a) Trace the curve $\mathrm{r}=\cos 4 \theta$.
(b) Trace the curve $y^{2}(1-x)=x^{2}(1+x)$..
5. (a) A man walks along the curve $20 y=3\left(4 x^{2}-20 x+9\right)$ between the points, Where $\mathrm{x}=\frac{1}{2}$ and $x=\frac{9}{2}$ find the distance covered by the man?
(b) Find the surface area of the solid generated by the revolution of the astroid $x^{2 / 3}+y^{2 / 3}=a^{2 / 3}$ about the x -axis.
[8+7]
6. (a) Change the order of integration in $\int_{0}^{4 a} \int_{x^{2} / 4 a}^{2 \sqrt[a x]{ }} d y d x$.
(b) By Changing the order of integration evaluate $\int_{0}^{1} \int_{0}^{\sqrt{1-x^{2}}} y^{2} \mathrm{dy} \mathrm{dx} .[8+7]$
7. (a) Prove that div curl $f=0$
(b) For what value of the constant a will the vector
$\mathrm{A}=\left(\mathrm{axy}-\mathrm{z}^{3}\right) \mathrm{i}+(\mathrm{a}-2) \mathrm{x}^{2} \mathrm{j}+(1-\mathrm{a}) \mathrm{xz}^{2} \mathrm{k}$ have its curl identically equal to zero. [8+7]
8. (a) If $\mathrm{f}=3 \mathrm{xy} \mathrm{i}-\mathrm{y}^{2} \mathrm{j}$, evaluate $\int_{C} f . d r$ where C is the curve $\mathrm{y}=2 \mathrm{x}^{2}$, in xy plane from $(0,0)$ to $(1,2)$.
(b) Evaluate $\int_{s} f . N d s$, where $\mathrm{f}=18 \mathrm{zi}-12 \mathrm{j}+3 \mathrm{yk}$ and S is the part of the plane $2 x+3 y+6 z=12$ located in first octant.

I B.Tech I Semester Supplementary Examinations, Jan/Feb 2015 MATHEMATICS-I
(Common to Civil Engineering, Electrical \& Electronics Engineering, Mechanical Engineering, Electronics \& Communication Engineering, Computer Science \& Engineering, Chemical Engineering, Electronics \& Instrumentation Engineering, Bio-Medical Engineering, Information Technology, Electronics \& Computer Engineering, Aeronautical Engineering, Bio-Technology, Automobile Engineering, Mining and Petroliem Technology)
Time: 3 hours
Max Marks: 75
Answer any FIVE Questions
All Questions carry equal marks

1. (a) Solve $\frac{d y}{d x}=\frac{x^{3}+y^{3}}{x y^{2}}$
(b) Find the time required for a sum of money to double itself at 5% per annum compounded continuously?
$[8+7]$
2. (a) Solve $y^{111}+6 y^{11}+11 y^{1}+6 y=e^{2 x}$
(b) Solve $\frac{d^{2} y}{d x^{2}}-2 \frac{d y}{d x}+y=x e^{x} \operatorname{Sin} x$
3. (a) Expand $f(x, y)=e^{x+y}$ in the neighborhood of $(1,1)$.
(b) If $u=\sqrt{x y}$ then find all the first and second order partial derivatives of u. $[8+7]$
4. (a) Trace the curve $x^{2}\left(x^{2}+y^{2}\right)=\left(x^{2}-y^{2}\right)$.
(b) Trace the curve $x=\sin \theta, y=\sin ^{2} \theta \cos \theta$..
5. Prove that the volume of the solid generated by the revolution about the x-axis of the loop of the curve $x=t^{2}, y=t-\frac{1}{3} t^{3}$ is $\frac{3 \pi}{4}$.
6. (a) Evaluate $\iint x y d x d y$ over the positive Quadrant of the circle $x^{2}+y^{2}=a^{2}$.
(b) Evaluate $\iiint_{v}(x y+y z+z x) d x \mathrm{dy} \mathrm{dz}$ where V is the region of space bound by $x=0, x=1, y=0, y=2, z=0, z=3$.
7. (a) Find the directional derivative of $x y z^{2}+x z$ at $(1,1,1)$ in a direction of the normal to the surface $3 x^{2} y+y=z$ at $(0,1,1)$.
(b) Show that the vector $\left(x^{2}-y z\right) i+\left(y^{2}-z x\right) j+\left(z^{2}-x y\right) k$ is irrotational and find its scalar potential.
8. (a) Let C be the circle $x^{2}+y^{2}=4$, oriented counterclockwise. Use Green's Theorem to evaluate the following integral $\oint_{c}\left(\cos \left(y^{2}\right)-y^{3}\right) d x+x^{3} d y$
(b) Compute $\oint_{s}\left(\mathrm{ax}^{2}+\mathrm{by}^{2}+\mathrm{cz}^{2}\right) \mathrm{dS}$ over the sphere $\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}=1 . \quad[8+7]$

Set No. 4

I B.Tech I Semester Supplementary Examinations, Jan/Feb 2015 MATHEMATICS-I
(Common to Civil Engineering, Electrical \& Electronics Engineering, Mechanical Engineering, Electronics \& Communication Engineering, Computer Science \& Engineering, Chemical Engineering, Electronics \& Instrumentation Engineering, Bio-Medical Engineering, Information Technology, Electronics \& Computer Engineering, Aeronautical Engineering, Bio-Technology, Automobile Engineering, Mining and Petroliem Technology)
Time: 3 hours
Max Marks: 75
Answer any FIVE Questions
All Questions carry equal marks

1. (a) Solve $x \frac{d y}{d x}+y=x^{3} y^{6}$
(b) Find the orthogonal trajectory of the family of curves $r^{2}=a \operatorname{Cos} 2 \theta$, where ' a ' is a parameter
2. (a) Solve $\left(D^{3}-6 D^{2}+11 D-6\right) y=e^{-2 x}+e^{-3 x}$
(b) Solve $\frac{d^{2} y}{d x^{2}}-8 \frac{d y}{d x}+15 y=0$
3. (a) Expand $f(x, y)=e^{x+y}$ in the neighborhood of $(1,1)$.
(b) If $u=\sqrt{x y}$ then find all the first and second order partial derivatives of u. $[8+7]$
4. (a) Trace the curvey $=(x-2)(x+3)(x-4)$..
(b) Trace the curve $\mathrm{r}=\frac{1}{2}-\sin \theta$.
5. (a) Find the length of the arc of the curve $\mathrm{y}=\log (\sec x)$ from $x=o$ to $\frac{\pi}{3}$.
(b) Find the perimeter of the loop of the curve $3 a y^{2}=x(x-a)^{2}$.
6. (a) Evaluate $\iint(x+y)^{2} d x$ dy. over the area bounded by the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$.
(b) Transform the following to Cartesian form and hence evaluate $\int_{0}^{\pi} \int_{0}^{a} r^{3} \sin \theta d r d \theta$. [8+7]
7. (a) Prove that $\operatorname{div}(\bar{r} / \mathrm{r})=2 / \mathrm{r}$.
(b) Show that $\mathrm{A}=\left(6 x y+z^{3}\right) \mathrm{i}+\left(3 \mathrm{x}^{2}-\mathrm{z}\right) \mathrm{j}+\left(3 \mathrm{x}^{2} \mathrm{z}^{2}-\mathrm{y}\right) \mathrm{k}$ is irrotational. Find ϕ such that $\mathrm{A}=\nabla \phi$. Prove that div curl $\mathrm{A}=0$
8. (a) Evaluate $\iint_{S}(y z i+z x j+x y k) \cdot d S$ where S is the surface of the sphere $\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}=\mathrm{a}^{2}$ in the first octant.
(b) Evaluate $\oint_{c}\left(x^{2}-2 x y\right) d x+\left(x^{2} y+3\right) d y$ around the boundary of the region defined by $\mathrm{y}^{2}=8 \mathrm{x}$ and $\mathrm{x}=2$.
